Search results

Search for "charge carrier mobility" in Full Text gives 34 result(s) in Beilstein Journal of Nanotechnology.

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • might produce localization of donor states close to the aromatic ring, were suggested as the source of the bandgap modulation due to changes in the functionality of the organic linker [82]. Due to MOFs’ low resistivity and rapid charge carrier mobility, some researchers [80][81][82][83] have recently
PDF
Album
Review
Published 01 Jun 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • light absorption, weaker charge separation, and poor charge carrier mobility. Researchers are concentrating on several strategies, such as doping, heterojunction formation, induction of the surface plasmon resonance effect, and the formation of Z-schemes, Schottky junctions, and engineered composites
PDF
Album
Review
Published 03 Mar 2023

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • temperatures above 400 °C. However, the implications of local oxidation and reduction for charge carrier mobility at lower temperatures are by far less well studied. Therefore, a combined polarization-KPFM experiment was performed on a dual-phase material consisting of 60 vol % Ce0.8Sm0.2O1.9 and 40 vol
PDF
Album
Full Research Paper
Published 15 Dec 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • optimum quantity (0–0.1 wt %) for the luminance of the device [54]. They observed an approximate six-fold increase in the PL emission for 0.005 wt % of graphene nanosheets. The reason for the increased PL emission is attributed to the higher charge carrier mobility in graphene nanostructures, which
PDF
Album
Review
Published 24 Sep 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • Conjugated polymers (CPs) as photocatalysts have evoked substantial interest. Their geometries and physical (e.g., chemical and thermal stability and solubility), optical (e.g., light absorption range), and electronic properties (e.g., charge carrier mobility, redox potential, and exciton binding energy) can
  • tuning the bandgap, enlarging the surface area, enabling more efficient separation of electron–hole pairs, and enhancing the charge carrier mobility. In particular, donor–acceptor (D–A) polymers were demonstrated as a promising platform to develop high-performance photocatalysts due to their easily
  • tunable bandgaps, high charge carrier mobility, and efficient intramolecular charge transfer. In this minireview, recent advances of D–A polymers in photocatalytic hydrogen evolution are summarized with a particular focus on modulating the optical and electronic properties of CPs by varying the acceptor
PDF
Album
Review
Published 30 Jun 2021

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • Technology, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany 10.3762/bjnano.11.117 Abstract Helium ion irradiation is a known method of tuning the electrical conductivity and charge carrier mobility of novel two-dimensional semiconductors. Here, we report a systematic
  • studied the effects of varying the irradiated channel area of helium ion-treated monolayer MoS2 FETs. Introducing a small number of defects into the material (approx. 10% of irradiated-to-pristine channel area) can serve to improve the charge carrier mobility and the electrical conductance. We found that
PDF
Album
Full Research Paper
Published 04 Sep 2020

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • a top electrode. We were able to determine a relationship between island size and electrical conductivity, and from this dependence, we could obtain information on the lateral charge transport and charge carrier mobility within the thin OSC layers. Our study demonstrates that AFM nanografting of
  • ]. Domain boundaries, contaminations and defects have a pronounced, negative effect on charge carrier mobility. This fact calls for measurements on low-defect density samples, preferentially macroscopic single crystals, to determine the intrinsic mobilities. This approach, however, is difficult due to the
  • demonstrated that the molecular packing of the monomers within the SAM is beneficial to the intermolecular electronic coupling and further promote charge carrier mobility. In accordance with the simulation, the experimental analysis of the apparent height of the islands as a function of island diameter in the
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • gate dielectric, which is a crucial requirement for the performance of the OFETs and for the device reliability. Charge-carrier mobility is improved in the presence of this polymer [17]. PPXC is also an appropriate hydroxyl-free gate dielectric and prevents trapping of electrons at the semiconductor
PDF
Album
Full Research Paper
Published 12 Feb 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • conversion efficiency of all solar absorber materials because decreasing the amount of grain boundaries likely increases charge carrier mobility [26]. The crystallite sizes of as-deposited and thermally treated Sb2S3 layers are presented in Table 2. The effect of the deposition temperature is observed in Sb
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • -charged cations, such as Sn2+, Mn2+, or Ge2+, where the tin-based materials have gained the most attention and progress [10][16][18][29][30][38][44][54][59][60][61][62][63][64][65]. The Sn-based HPs (CsSnX3, MASnX3) show a high charge carrier mobility and diffusion length, comparable to the Pb-based
PDF
Album
Review
Published 21 Aug 2018

Predicting the strain-mediated topological phase transition in 3D cubic ThTaN3

  • Chunmei Zhang and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1399–1404, doi:10.3762/bjnano.9.132

Graphical Abstract
  • to note that the conduction band (CB) of ThTaN3 is very dispersive around the Γ point, signifying a very low electron effective mass. The effective mass of the electron at the Γ point is calculated to be 0.395 me. Such a small electron mass will greatly improve charge carrier mobility, suggesting
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2018

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • with permission from [134], copyright 2014 Royal Society of Chemistry. Formation of gold nanoparticles in a bithiazole–benzothiazole-based polymer matrix and their role as a template for the self-assembly of the bulk polymer leading to enhancement of the charge-carrier mobility. Reprinted with
PDF
Album
Review
Published 07 Dec 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • . Keywords: dielectric; encapsulation layer; flexible substrate; organic field effect transistor; Parylene C; Review Introduction An improvement of the performance of organic transistors by means of boosting charge-carrier mobility is one of the main quests in organic electronics, calling for novel design
  • [17]. Measured variations of the charge-carrier mobility [18] were assigned either to mechanical changes in the semiconductor film or to charge trapping at the dielectric/semiconductor and semiconductor/electrode interfaces. It should be pointed out that the primary element affecting the transistor
  • properties do not change after mechanical tests. The remaining transistor parameters such as charge carrier mobility, subthreshold and threshold voltage also remain practically unaffected by mechanical testing. The threshold voltage value, 0.44 V for the unbent device, became slightly reduced down to 0.42 V
PDF
Album
Review
Published 28 Jul 2017

Spin-chemistry concepts for spintronics scientists

  • Konstantin L. Ivanov,
  • Alexander Wagenpfahl,
  • Carsten Deibel and
  • Jörg Matysik

Beilstein J. Nanotechnol. 2017, 8, 1427–1445, doi:10.3762/bjnano.8.143

Graphical Abstract
  • -called spin blocking can be cancelled by the magnetic field. The spin mixing seems to be most pronounced in the slow hopping regime [84], for instance, when deep traps reduce the charge carrier mobility [85]. Oppositely charged polaron pairs [16] (or correlated radical ion pairs) can show a bipolar OMAR
PDF
Album
Review
Published 11 Jul 2017

The integration of graphene into microelectronic devices

  • Guenther Ruhl,
  • Sebastian Wittmann,
  • Matthias Koenig and
  • Daniel Neumaier

Beilstein J. Nanotechnol. 2017, 8, 1056–1064, doi:10.3762/bjnano.8.107

Graphical Abstract
  • technology. The fascinating properties of graphene, such as extremely high charge carrier mobility of more than 200,000 cm2·V−1·s−1 [3], was consistently shown in academic research. For instance, a sheet of high-quality graphene sandwiched between two exfoliated single-crystalline hexagonal boron nitride (h
  • -BN) sheets shows a charge carrier mobility of 200,000 cm2·V−1·s−1 [4], which is about 300 times higher than that of silicon. However, if graphene is integrated in real-world devices with the constraints of manufacturability, the properties of graphene and its devices dramatically degrade. The
  • charge carrier mobility. Several studies have been conducted on this topic [35][36], but the impact on manufacturability is still not very clear. However, there is continuous improvement towards large crystallite sizes in the millimeter range [37][38]. 2.2 Contamination Another important intrinsic
PDF
Album
Review
Published 15 May 2017

First examples of organosilica-based ionogels: synthesis and electrochemical behavior

  • Andreas Taubert,
  • Ruben Löbbicke,
  • Barbara Kirchner and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2017, 8, 736–751, doi:10.3762/bjnano.8.77

Graphical Abstract
  • activation of energy Ea of 0.6 eV between −20 °C and 20 °C and subsequently with an Ea of 0.45 eV from 20 °C to 80 °C. It shows that the charge-carrier mobility is less activated with temperature when the temperature increases. The conductivities obtained from the measurements are comparable to other IGs
PDF
Album
Full Research Paper
Published 29 Mar 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • packed, atomically thin layer of sp2 hybridised carbon atoms arranged in a honeycomb network. Since the first report in 2004 [1], graphene has attracted great interest in the scientific community due to its unique properties such as superior charge carrier mobility, high transparency, excellent
PDF
Album
Review
Published 24 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • concentration of defects to the graphene 2D crystal lattice. These defects decrease the charge carrier mobility in graphene which is reflected in reduced electrical conductivity. As compared to the pristine sensor, the response to both gases is clearly improved after the functionalisation by PLD. The response
PDF
Album
Full Research Paper
Published 07 Mar 2017

Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor

  • Ivan V. Komissarov,
  • Nikolai G. Kovalchuk,
  • Vladimir A. Labunov,
  • Ksenia V. Girel,
  • Olga V. Korolik,
  • Mikhail S. Tivanov,
  • Algirdas Lazauskas,
  • Mindaugas Andrulevičius,
  • Tomas Tamulevičius,
  • Viktoras Grigaliūnas,
  • Šarunas Meškinis,
  • Sigitas Tamulevičius and
  • Serghej L. Prischepa

Beilstein J. Nanotechnol. 2017, 8, 145–158, doi:10.3762/bjnano.8.15

Graphical Abstract
  • charge carrier mobility [1], it has huge functional ability in many applications, especially in high frequency electronics. The increase in the number of layers with conventional Bernal stacking strongly affects the electronic properties of graphene. Contrary to monolayer graphene, in Bernal-stacked
PDF
Album
Full Research Paper
Published 16 Jan 2017

Tandem polymer solar cells: simulation and optimization through a multiscale scheme

  • Fanan Wei,
  • Ligang Yao,
  • Fei Lan,
  • Guangyong Li and
  • Lianqing Liu

Beilstein J. Nanotechnol. 2017, 8, 123–133, doi:10.3762/bjnano.8.13

Graphical Abstract
  • simulations were carried out to compute the effective charge carrier mobility and recombination rate. Firstly, the internal morphology in active layers was generated through a simulated annealing method [27]. In the simulated annealing method, the Ising model is adopted to generate the morphology with desired
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2017

Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors

  • Celia García-Hernández,
  • Cristina García-Cabezón,
  • Fernando Martín-Pedrosa,
  • José Antonio De Saja and
  • María Luz Rodríguez-Méndez

Beilstein J. Nanotechnol. 2016, 7, 1948–1959, doi:10.3762/bjnano.7.186

Graphical Abstract
  • on the material deposited on the PEDOT/PSS layer [29][30][31]. In the case of CuPc or AuNPs, the improvement in the conductance can be due to the increase in the charge carrier mobility and/or in the large effective surface provided by the metallic AuNPs. In the case of LuPc2, which is an intrinsic
PDF
Album
Full Research Paper
Published 08 Dec 2016

Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

  • Suneel Kumar,
  • Rahul Sharma,
  • Vipul Sharma,
  • Gurunarayanan Harith,
  • Vaidyanathan Sivakumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2016, 7, 1684–1697, doi:10.3762/bjnano.7.161

Graphical Abstract
  • [11], ozonization [12] and adsorption [13], as these methods are unable to remove the contaminants completely. Some recent studies have reported ZnO as a better photocatalytic material in the degradation of organic dyes in aqueous solutions, because of high charge carrier mobility and significantly
PDF
Album
Full Research Paper
Published 11 Nov 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
  • graphene oxide CVD Synthesis on SiC Each of these methods has its advantages and disadvantages in terms of quality, yield production and applications, as summarized in Table 1. In particular, mechanical exfoliation most likely produces the best samples in terms of charge carrier mobility but is probably
PDF
Album
Review
Published 01 Feb 2016

Simulation of thermal stress and buckling instability in Si/Ge and Ge/Si core/shell nanowires

  • Suvankar Das,
  • Amitava Moitra,
  • Mishreyee Bhattacharya and
  • Amlan Dutta

Beilstein J. Nanotechnol. 2015, 6, 1970–1977, doi:10.3762/bjnano.6.201

Graphical Abstract
  • for next generation transistor devices. The radial heterostructure offers the advantage of control of the band gap and charge carrier mobility by tuning their size [5] and selecting suitable impurity doping scheme [3][6]. In addition, they exhibit significantly suppressed phonon thermal conductivity
  • ], it is prohibitively difficult to experimentally measure the thermal load on ultrathin CSNWs. The effect of thermal stress on the performance of the device is again two-fold. The mechanical load would alter its electronic band structure and charge carrier mobility [11][12][13], which is particularly
PDF
Album
Full Research Paper
Published 02 Oct 2015

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
PDF
Album
Full Research Paper
Published 07 Jul 2015
Other Beilstein-Institut Open Science Activities